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SUMMARY

Spontaneous patterns of activity in the developing vi-
sual system may play an important role in shaping
the brain for function. During the period 4–9 dpf
(days post-fertilization), larval zebrafish learn to
hunt prey, a behavior that is critically dependent on
the optic tectum. However, how spontaneous activ-
ity develops in the tectum over this period and the
effect of visual experience are unknown. Here we
performed two-photon calcium imaging of GCaMP6s
zebrafish larvae at all days from 4 to 9 dpf. Using
recently developed graph theoretic techniques, we
found significant changes in both single-cell and
population activity characteristics over develop-
ment. In particular, we identified days 5–6 as a critical
moment in the reorganization of the underlying func-
tional network. Altering visual experience early in
development altered the statistics of tectal activity,
and dark rearing also caused a long-lasting deficit
in the ability to capture prey. Thus, tectal develop-
ment is shaped by both intrinsic factors and visual
experience.

INTRODUCTION

The emergence of spontaneous activity is a hallmark of nervous

system development, yet its function, developmental trajectory,

and susceptibility to disturbances in sensory input are still un-

clear [1]. The structure of spontaneous activity can give insight

into the underlying patterns of brain connectivity [2] and is devel-

opmentally altered in disease states such as autism [3]. One

suggestion is that it may play the role of a Bayesian prior for ex-

pected patterns of sensory activity [4], and indeed patterns of

spontaneous activity in cortex are predictive of subsequent pat-

terns of evoked activation across cortical maps [5] (B. Hein et al.,

2016, Soc. Neurosci., abstract, program no. 799.11).

Spontaneous activity in themammalian visual cortex generally

takes the form of the sequential activation of neural assemblies,
Current
i.e., groups of neurons that tend to fire together [6]. During devel-

opment this cortical activity is at least partly driven by retinal

waves [7], and its statistical structure evolves with time [3, 8].

However, due to the practical limitations of mammalian systems,

the early emergence of spontaneous activity across neural

populations in the cortex is difficult to study in fine temporal

detail. The larval zebrafish provides an ideal model system in

this regard, permitting non-invasive imaging of brain activity

throughout early development. Zebrafish begin to hunt prey

around 5 days post-fertilization (dpf), a behavior that is strongly

dependent on their main visual processing center, the optic

tectum [9]. Spontaneous retinal waves in zebrafish peak at

3.25 dpf but are largely absent beyond 3.5 dpf [10]. Spontaneous

tectal activity at 8 dpf consists of structured neural assemblies,

similar to the patterns of activity evoked by prey stimuli at this

age [11]. However, how this activity evolves over earlier develop-

ment is unknown.

Reliable automatic detection of neural assemblies during

spontaneous activity is challenging, as these assemblies tend

to be very noisy. Each neuronmay be part of several assemblies,

and the neurons that make up one assembly will not always fire

together. Identifying neural assemblies is somewhat analogous

to the much better-studied problem of identifying community

structure in a network. Graph-theoretic techniques have devel-

oped rapidly in recent years, driven by the great interest inmining

data from the statistical structure of social networks. These tech-

niques provide powerful new tools that are also applicable to the

analysis of neural firing patterns. In particular, very recent work

has introduced a new statistical approach for estimating the

number of communities in a network [12, 13], which produces

excellent performance on benchmark problems [12] but has

not yet been applied to finding neural assemblies.

Appropriate visual experience during development is crucial

for many aspects of mammalian visual cortical development

[14]. In particular, manipulations such as dark rearing during

the critical period cause profound changes in the structure

of V1 [15]. In contrast, the development of the zebrafish

tectum has so far appeared more hard wired, with dark rearing

leaving tectal development apparently largely unaffected [16].

Here we systematically mapped how spontaneous activity

develops from day to day in the zebrafish tectum during the
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Figure 1. Spontaneous Activity Characteristics Change over Development

(A) A developing larval zebrafish head at 4, 6, and 8 dpf. White dashed rectangle is the imaging area.

(B) Zebrafish embedded in agarose were imaged in the dark using a two-photon microscope for up to 1 hr (schematic not to scale).

(C) Fluorescence image of a 6 dpf tectum expressing H2B-GCaMP6s. PVL, NP, midline (straight dashed line), and anterior (A) and posterior (P) ends of the tectum

are indicated.

(D–F) Top: raster plots of spontaneous PVL activity at 4 (D), 6 (E), and 8 dpf (F) revealing sporadic single-neuron activity as well as episodes of synchronous

activity. Bottom: proportion of co-active neurons as a fraction of the population recorded for each time bin. The red line indicates the threshold derived from a

shuffle control for a statistically significant proportion of co-active neurons in a frame (see STAR Methods).

(G) A DF=F trace of a PVL neuron from a 6 dpf fish. A neuron was considered active if DF=F exceeded two SDs above the mean (red line; see STAR Methods).

(H) Event frequency increases from 4 to 5–7 dpf and then decreases again at 8 and 9 dpf. Mean event frequencies over neurons (black) and fish (gray) follow a

similar profile. Error bars are SEM (4 versus 5 dpf, p = 10�4; 5 versus 6 and 7 dpf, no difference; 5 versus 8 dpf, p = 10�5; 5 versus 9 dpf, p = 10�3;4 versus 8 and

9 dpf, no difference; one-way ANOVA over neurons, Bonferroni correction).

(I) Short-range pairwise correlation increases from 4 to 5 dpf. Means over neurons (black) and fish (gray) follow a similar trend (4 versus 5 dpf, p = 10�120; 5 versus

6 dpf, p = 10�14; 5 versus 7 dpf, p = 10�27; 5 versus 8 dpf, p = 10�4; 5 versus 9 dpf, p = 10�10; 4 versus 6 dpf, p = 10�47; 6 versus 7 dpf, no difference; one-way

ANOVA over neurons, Bonferroni correction).

(J) Data dimensionality as the percentage of principal components required to explain 80%of the variance in activity shows a dip at 5 dpf (4 versus 5 dpf, p = 0.02;

4 dpf versus the rest, no difference; t test).

See also Figure S1.
period 4–9 dpf, using GCaMP6s and two-photon calcium imag-

ing. We characterized the changes in spontaneous activity over

development, and we applied graph-theoretic techniques to

extract statistical patterns over time from these data, relating

to both functional connectivity and neural assemblies. We also

investigated how the characteristics of spontaneous activity

are perturbed by early eye enucleation, dark rearing, and feature-

less rearing. Our results reveal profound changes in network

organization over this period in zebrafish, identify 5–6 dpf as a

critical moment in zebrafish tectal development, and show that

changes in visual experience are sufficient to disrupt normal

tectal functional architecture and hunting behavior.
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RESULTS

Statistics of Tectal Spontaneous Activity Change over
Development
To study the statistics of spontaneous activity over develop-

ment, we performed two-photon calcium imaging of larval zebra-

fish from 4 to 9 dpf (Figure 1). During this period, zebrafish

transition from self-feeding via the yolk sac to feeding via hunting

behavior, which is critically dependent on the optic tectum [9].

The tectum is divided into two main areas, the periventricular

layer (PVL), which contains the cell bodies of most tectal neu-

rons, and the synaptic neuropil area (NP), which contains their



dendrites and axons, the axons of retinal afferents, and sparsely

distributed cell bodies. We used the fluorescent indicator H2B-

GCaMP6s, a nuclear-targeted protein that only shows calcium

activity in PVL and NP cell bodies and not axons or dendrites

in the NP. We recorded from both the PVL and NP for up

to 1 hr in the dark from awake larvae embedded in agarose (Fig-

ures 1B and 1C) (4 dpf, n = 7 fish, mean 76 neurons/fish; 5 dpf,

n = 7 fish, mean 101 neurons; 6 dpf, n = 9 fish, mean 85 neurons;

7 dpf, n = 12 fish, mean 56 neurons; 8 dpf, n = 8 fish, mean 58

neurons; and 9 dpf, n = 8 fish, mean 60 neurons).

Spontaneous activity at all ages was composed of occasional

single-neuron calcium transients as well as episodes of synchro-

nous calcium transients across ensembles of neurons (Figures

1D–1F). We first characterized changes over development at

the single-cell level. Elevations in calcium signal amplitude

were measured as deflections from baseline ðDF=FÞ, which we

refer to as calcium events (Figure 1G) (see STAR Methods). Sur-

prisingly, the frequency of calcium events of PVL neurons

increased from 4 dpf to 5–7 dpf and afterward decreased at

8 and 9 dpf (Figure 1H). Short-range pairwise correlations

(5–50 mm) in the tectum peaked at 5 dpf and declined thereafter

(Figure 1I). Furthermore, the dimensionality of the data, i.e., the

percentage of principal components required to explain 80%

of the variance in activity, decreased at 5 dpf, suggesting higher

population synchrony at this age (Figure 1J). Thus, the devel-

oping tectum exhibits substantial changes in spontaneous

activity for both individual neurons and at the population level,

suggesting that the circuit is reorganizing during this time.

Two Spatially and Functionally Segregated Populations
of NP Neurons
Besides the PVL, some aspects of tectal information processing

also involve neurons located in the NP. Superficial layers of the

tectal NP receive input from the vast majority of retinal axons.

In particular, superficial inhibitory interneurons (SINs) play impor-

tant roles in filtering out low-frequency spatial information [17],

as well as encoding object size [18] and diverse features of loom-

ing stimuli [19]. Deep layers of the NP receive input from

superficial NP neurons and also a small proportion of retinal

input. Information from deep-layer neurons is transmitted to

PVL neurons and then sent to premotor areas in the midbrain

and hindbrain [20, 21]. We therefore asked whether this func-

tional segregation of NP neurons was reflected in their sponta-

neous activity patterns and developmental trajectories.

We fitted an ellipse to the NP contour of each fish (Figure S1A)

and projected the coordinates of each NP neuron onto the

ellipse’s major and minor axes, representing the anterior-poste-

rior axis and the latero-medial axis, respectively. In our record-

ings, NP neurons were fewer in number than PVL neurons,

representing less than 15% of the population recorded per

fish. At each age, there was no significant correlation between

event frequency and position of NP neurons on the anterior-pos-

terior axis. However, there was a significant correlation between

event frequency and the depth of NP neurons, i.e., position on

the latero-medial axis, for all days except 4 and 9 (Figure S1B).

NP neurons closer to the skin showed lower event frequency

than deeper NP neurons. The distribution of event frequency of

NP neuronswas fitted by aGaussianmixturemodel (Figure S1C).

The distribution was best explained by three Gaussians; how-
ever, two of the Gaussians captured most of the data, suggest-

ing two separate populations with different mean event

frequencies. These two populations had a clear spatial segrega-

tion (Figures S1D–S1F). NP neurons that showed low event fre-

quency (below one event per minute) were more superficial

than NP neurons with high event frequency (t test, p = 10�12).

The event frequency of both of these populations of NP neurons

remained constant over development (Figure S1G). Thus,

consistent with distinct functional roles in response to visual

cues, there are two spatially segregated populations of NP neu-

rons, exhibiting different and developmentally stable patterns of

spontaneous activity and a different developmental profile to the

PVL neurons.

Graph-Theoretic Analysis Reveals Changes in
Functional Network Architecture over Development
A powerful way to describe the functional organization of the

tectum is to treat the tectum as a graph, a mathematical struc-

ture composed of a set of nodes joined together in pairs by

edges [22]. We applied graph-theoretic techniques in two

different ways to our data. First, to examine functional connectiv-

ity, we constructed a graph for each recorded tectum in which

each node represents a neuron and each edge between two

neurons represents the correlation between them. A binary con-

nectivity matrix (adjacency matrix) was derived by thresholding

this matrix so that only high correlations (R0.3) are represented

(Figures 2A–2C). Second, to extract neural assemblies from the

movies, we used the approach described in the next section.

The functional connectivity graphs arising from the first

approach can be described by a variety of standard metrics,

whose changes over development give insight into the functional

reorganization taking place. The graph mean degree, i.e., the

mean number of neighbors over all nodes, peaked at 5 dpf (Fig-

ure 2D), indicating a peak in overall network connectivity at 5 dpf.

In contrast, the mean degree of NP neurons showed a slight but

non-significant decrease over age (Figure 2E). The degree distri-

bution, pðkÞ, i.e., the fraction of nodes in the graph with degree k

followed a power law pðkÞ � k�a, a = 1 ± 0.1 in all graphs over

development (Figure 2F). This topological feature, often called

‘‘scale free,’’ is common to many real world networks [23] and in-

dicates a high proportion of nodes with low connectivity and a

low proportion of ‘‘hub’’ nodes with higher connectivity than ex-

pected by chance. We also investigated measures of segrega-

tion that quantify the presence of densely interconnected groups

of nodes in the graph, known as communities [24]. A simplemea-

sure of segregation is the clustering coefficient [25]. This is based

on the fraction of triangles around an individual node, i.e., the

fraction of the node’s neighbors (defined by graph edges) that

are also neighbors of each other and reflects the prevalence of

clustered connectivity around individual nodes. The mean clus-

tering coefficient increased from 4 to 5 dpf and then decayed

and remained stable (Figure 2G). For comparison, we generated

an equivalent set of 40 random (Erd}os-R�enyi) graphs per fish,

whichmaintained the number of nodes and edges, but the edges

were placed randomly. The mean clustering coefficient in the

equivalent random graphs was substantially lower and remained

stable over development (Figure 2G). Thus, the tectal graphs

were more clustered than expected by chance at all ages but

were most clustered at 5 dpf.
Current Biology 27, 2407–2419, August 21, 2017 2409
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Figure 2. Graph Measures Reveal Changes in Functional Network Architecture over Development

(A) Neuron-to-neuron correlation matrix of a 6 dpf fish.

(B) Thresholded correlation matrix, providing an adjacency matrix for graph construction.

(C) A representation of the tectum as a graph. Each node (triangle) represents a neuron, and each edge represents functional connectivity between two neurons

(gray lines for intra-PVL edges and orange lines for edges involving NP neurons). The solid black outline shows the boundary of the PVL.

(D)Mean graph degree over development increases from 4 dpf to 5–6 dpf and then decreases at 7–9 dpf. Mean degree over neurons (black) and fish (gray) follow a

similar profile (4 versus 5 dpf, p = 10�24; 4 versus 6 dpf, p = 10�3; 4 versus 7 dpf, no difference; 5 versus 6 dpf, p = 10�10; 5 versus 7 dpf, p = 10�25; 5 versus 8 dpf,

p = 10�8; 5 versus 9 dpf, p = 10�20; one-way ANOVA over neurons, Bonferroni correction).

(E) The NP-to-PVL mean degree shows a slight but non-significant decrease over development.

(F) Degree distribution probability of 6 dpf fish (gray) and the fitted power law curve (black) plotted on a log scale suggest that the graph topology is scale free.

Other days are very similar.

(G) Mean clustering coefficient increases at 5 dpf and then decreases at 6 and 7 dpf. Mean clustering coefficient over neurons (black) and fish (gray) follow a

similar profile. (4 versus 5 dpf, p = 10�14; 5 versus 6 dpf, p = 0.03; 5 versus 7 dpf, p = 10�4; 5 versus 8 dpf, no difference; 5 versus 9 dpf, p = 10�3; 4 versus 6 dpf,

10�5; 6 versus 7 dpf, no difference; one-way ANOVA, Bonferroni correction). The clustering coefficient for the equivalent random (Erd}os-R�enyi) graphs is stable

over development (mean, dashed black line; SEM, dashed gray line).

(H) Six communities (color coded) were detected in the graph presented in (C).

(I) The number of communities peaks at 5 dpf (4 versus 5 dpf, p = 0.03; 5 versus 6 dpf, no difference; 5 versus 7 dpf, p = 0.04; t test). Only graphs with more than

20 connected PVL neurons were considered for community structure analysis. The equivalent random (Erd}os-R�enyi) graphs are stable at one community over

development (dashed black line).

(J) Global efficiency peaks at 5 dpf, indicating an increase in short-range functional connections at 5 dpf. The global efficiency for the equivalent Erd}os-R�enyi

graphs is higher (mean, dashed line; SEM, gray line) (4 versus 5 dpf, p = 0.03; 5 versus 6 dpf, no difference; 5 versus 7 dpf, p = 0.03; 4 versus 6 dpf, no difference;

t test).
We also looked at measures of functional integration, which

estimate the ease with which nodes communicate. These are

based on the concept of a path, i.e., sequences of distinct nodes

and edges representing routes of information flow between pairs

of nodes. The lengths of the paths consequently estimate the po-

tential for functional integration between nodes, with shorter

paths implying stronger potential for integration. Global effi-

ciency, which is the average inverse shortest path length,

peaked at 5 dpf (Figure 2J). When compared with equivalent
2410 Current Biology 27, 2407–2419, August 21, 2017
Erd}os-R�enyi graphs, we found higher global efficiency in the

latter, consistent with higher values of global efficiency in

random graphs relative to scale-free graphs.

However, more sophisticated measures of segregation in a

graph have recently been developed, which find the number of

densely interconnected groups of nodes and their composition,

i.e., community structure. While various heuristic algorithms

exist, more mathematically rigorous approaches have been

based on statistical inference. The observed network is fitted



to a general class of models by adjusting the parameters of the

model, and the parameters then provide information about the

structure of the network. The most common model in this

context is the stochastic block model [26]. Graphs within the

model arise by assigning n nodes to k communities randomly

and then assigning edges between pairs of nodes with a proba-

bility that depends on whether or not the nodes are in the same

community. The probability that the observed graph was con-

structed from these parameters can then be determined. By

applying Bayes theorem, the posterior distribution over k and

all possible assignments can then be calculated, i.e., the likeli-

hood of each value of k and an assignment given the observed

graph, and some assumption about the prior distribution over k

(usually taken to be uniform, i.e., all values of k from 1 to n are

equally likely). We employed a very recent development of this

approach, which uses the degree-corrected stochastic block

model [12] (see STAR Methods). This is both computationally

efficient and has been shown to have excellent performance

on benchmark problems. Having determined the number of

communities, we then used a standard spectral clustering

approach [13, 27] to assign nodes to these communities (see

STAR Methods) (Figure 2H). The mean number of communities

increased from 4 to 5 dpf, after which it decayed and remained

stable (Figure 2I). Thus, although the underlying topology of the

network remains robust, tectal functional connectivity refines

over development.

Changes in Concerted Spontaneous Activity over
Development
Spontaneous activity at all ages was characterized by concerted

activity over assemblies of neurons, i.e., time points (frames),

including a number of co-active neurons that exceeded the

number expected to be co-active by chance (Figures 1D–1F).

We asked whether the overall activity for each fish could be

well characterized by a small number of neural assemblies

that repeated over the recording. This is a challenging problem

for two reasons. First, the number of assemblies present is un-

known a priori. Second, such assemblies are inherently noisy,

with each neuron potentially belonging to more than one assem-

bly and not necessarily firing reliably every time its associated

assembly is active. While a number of different approaches to

this problem have been proposed (e.g., [28–30]), we used

graph-theoretic techniques utilizing the statistically rigorous sto-

chastic block model algorithm described above. We first illus-

trate the steps involved for an artificial example. In this context,

the graph nodes now represent movie frames rather than neu-

rons, and the goal is to find communities of similar frames within

amovie (Figure 3A). That is, rather than taking the correlation be-

tween each pair of neurons over the movie as the metric of sim-

ilarity in the graph, now we consider the similarity in activity

pattern between each pair of frames. Assembly instances

were identified as densely connected subgraphs. Taking the

peak of the probability distribution over the number of commu-

nities (Figure 3B), we again used a standard spectral clustering

method to divide the graph into this number of densely con-

nected subgraphs [13]. We defined ‘‘core’’ assemblies as the

average of the frames within each subgraph, excluding neurons

with very low affinity to the assembly (see STAR Methods)

(Figure 3C).
Since these techniques have not previously been applied to

finding neural assemblies, we first validated them on surrogate

data with some of the statistical properties of the real data,

but where the ground truth assembly structure was known

(see STAR Methods). Unlike the example shown in Figures

3A–3C, the surrogate data contained assemblies that overlap-

ped (see STAR Methods), making their detection a much harder

problem. Nevertheless, the graph algorithm still performed

well, and in particular better than a recently proposed indepen-

dent component analysis (ICA)-based technique [29] (Fig-

ure 3D; Figure S2). This gave us confidence that the results for

real data, where no ground truth is available for reference,

were meaningful.

We then applied the same technique on the spontaneous ac-

tivity data from our fish and obtained a distribution of the poten-

tial number of embedded assemblies (Figure 3E). Based on this

distribution, we collected similar frames forming a community of

frames (Figure 3F; see STAR Methods) and, thus, the core as-

semblies for each fish (Figure 3G). We then asked whether all

assemblies were equally likely to appear. We found that for 47

out of 51 fish, the distribution of assembly frequencies was not

significantly different from a uniform distribution. We also

analyzed the cohesiveness of the assemblies, i.e., the strength

of the coupling between an assembly A and the assembly core

neurons ni that A contains. Given an assembly A, we calculated

the mean affinity of neurons, which approximates the average

Pðni jAÞ over all neurons ni. This measures how likely each

neuron is to be active, given that a particular assembly to which

the neuron belongs is active. Across assemblies this average

ranged between 0.4 and 0.9, with an average over all assemblies

for all fish of 0.6. Thus, when an assemblyA is active, the neurons

that make up its core are also likely to be active. We also looked

at PðAjniÞ, whichmeasures how likely an assembly is to be active

given that a particular assembly neuron is active. For each as-

sembly, we calculated its maximum value over all assembly neu-

rons and then looked at the distribution of thesemaximumvalues

over all assemblies. Only 4% of these values were above 0.2,

with an average over all assemblies of 0.09 ± 0.06 and a

maximum of 0.33. Thus, when any particular neuron is active,

there is only a relatively small chance that the assembly/assem-

blies of which it is a part will also be active. This indicates an

absence of ‘‘driving’’ neurons, whose activity strongly predicts

the behavior of an entire assembly. These two conditional prob-

abilities are quite different due to the fact that each individual

neuron is active far more often than any of the assemblies of

which it is a member.

To address how the properties of spontaneous neural assem-

blies change over development, we computed core assemblies

for all fish at all ages. The number of assemblies increased from 4

to 6 dpf (Figure 3H), and the number of neurons per assembly

peaked at 5 dpf (Figure 3I). The average spatial spread of each

cluster, as measured by the area of the smallest ellipse contain-

ing the locations of all core neurons in the cluster, decreasedwith

age (Figure 3J) and was significantly lower at 9 dpf than at 4 dpf.

Interestingly, despite the increase in number of assembly neu-

rons between 4 and 5 dpf, the area covered by the assembly re-

mains similar. This indicates spatially spread assemblies that are

sparser at 4 dpf and denser at 5 dpf. Thus, the properties of as-

semblies are dynamic over development, gradually becoming
Current Biology 27, 2407–2419, August 21, 2017 2411
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Figure 3. Concerted Spontaneous Activity Changes over Development

(A) An artificial example of assembly reconstruction. Left: four core assemblies were embedded in a population of 36 neurons. Dark circles represent assembly

neurons and white circles represent other neurons. Right: all 45 randomly generated frames that were input to the algorithm. Green circles show active neurons

and white circles show other neurons.

(B) Spontaneous frames arranged in a k-nearest-neighbor graph according to the frames’ cosine similarity measure (spring-electrical embedding visualization

[31]). Inset: probability distribution over the number of potential communities embedded in this artificial dataset as determined by the stochastic blockmodel. This

peaks at four embedded assemblies.

(C) Division of the graph in (B) using spectral clustering, with each of the clusters identified by its average activity pattern (gray frames, where lighter colors

represent weaker affinity to the assembly).

(D) Performance comparison between the graph approach and an alternative ICA-based technique in terms of best match score (see STARMethods) shows that

the graph approach produces more accurate results. This result is robust over different assembly mean frequencies (proportion of active frames, color coded).

(E) Example of application to real data. The probability distribution over the potential number of assemblies peaks at five for the example fish shown in Figure 2.

(F) Highly similar frames defining a core assembly. Each green circle (now binary scale) represents an active cell. Right bottom: the core assembly is the average of

highly similar frames (excluding neurons with <20% affinity to the assembly). Also shown is the ellipse fitted to determine the spatial extent of the cluster.

(G) Four core assemblies estimated after optimization, arranged by spatial organization along the anterior-posterior axis.

(legend continued on next page)
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more compact, but with the neurons per assembly and number

of assemblies peaking at days 5 and 6, respectively.

Enucleation Preserves Some Features of Spontaneous
Activity but Disrupts Others
Spontaneous retinal waves are present in many species [32] and

play a crucial role in the refinement of visual topographic maps

[7, 33–35]. In the developing zebrafish, spontaneous retinal

waves are present from 2.5–3.5 dpf [10]. To test whether retinal

activity (both evoked and spontaneous) plays a role in the devel-

opment of spontaneous activity in the tectum, we performed

enucleation at 24 hr post-fertilization (hpf) and then recorded

spontaneous tectal activity for 1 hr at 6 dpf. We investigated

both bilateral (n = 9 fish, mean 32 neurons/fish) and unilateral

(n = 10 fish, mean 62 neurons/fish) enucleation, the latter to

test whether normal input to an intact tectum influences the

development of its fellow denervated tectum. In this case,

following imaging of the denervated tectum, the intact tectum

was then imaged for 1 hr as an internal control (Figure 4A).

Even after removal of both eyes (bilateral enucleation [BE]), the

tectum still showed spontaneous activity, suggesting that this is

at least partially driven endogenously. In particular, therewere no

differences at the single-cell level found between normally

reared (NR, n = 8, mean 44 neurons/fish) and BE fish. This was

not the case for the unilateral enucleation, where a paired com-

parison wasmade between the denervated (Den) tectum and the

intact tectum. We found lower event frequency for PVL neurons

and a higher proportion of frames with no or only one active

neuron in the Den tecta (Figures 4B and 4C). Intriguingly, how-

ever, at a population level the intact tecta in the unilateral enucle-

ation case showed statistics much more similar to the Den and

BE tecta than to the tecta of NR fish, indicating a role for inter-

hemispheric transfer of information to the Den tectum. In partic-

ular the Den, BE, and intact tecta were all more correlated than

NR tecta at most distances, though the intact tecta were most

similar to the NR case (Figure 4D). This pattern was also reflected

in the mean graph degree (Figure 4E). Spontaneous neural as-

semblies were still present in the Den, BE, and intact tecta,

though they were slightly fewer in number (Figure 4F). Neurons

per assembly were lowest for the NR case (Figure 4G), and as-

sembly area was similar across the different cases (Figure 4H).

Neuron position in the tectum was more correlated with assem-

bly center of mass in the NR and intact tecta compared to the

Den and BE tecta (Figure 4I). Similar to the NR case, all assem-

blies were equally likely to appear, and in only two fish was the

distribution of assembly frequencies different from a uniform dis-

tribution. The affinity between neurons and assemblies was also

similar to the NR case. Thus, tectal spontaneous activity is at

least partially driven by non-retinal sources and influenced by

interhemispheric transfer, but retinal input during development

still plays an important role in shaping the statistics of sponta-

neous activity in the tectum.
(H) The number of assemblies increases from 4 to 6 dpf (p = 0.03, t test). Error b

(I) The number of neurons per assembly peaks at 5 dpf and remains stable betwee

p = 10�6; 5 versus 8 dpf, p = 10�4; 5 versus 9 dpf, p = 10�7; 4 versus 6–9 dpf, n

(J) The assembly-fitted ellipse area (measured in mm2) decreases over developmen

9 dpf, p = 10�2, Wilcoxon rank-sum test). Error bars are SEM.

See also Figure S2.
Dark Rearing Influences the Spatial Structure of
Population Activity and Prey-Capture Performance in a
Behavioral Assay
To directly address the influence of spontaneous retinal activity

on tectal development, we reared larvae in the dark starting

from 5 to 8 hpf and imaged tectal spontaneous activity at 6 dpf

(n = 8 fish, mean 65 neurons/fish). Similar to the BE case, sin-

gle-cell statistics in the dark-reared (DR) fish were largely the

same as the NR 6 dpf fish (n = 9 fish, mean 85 neurons/fish)

(10/14 hr dark-light cycle). In particular, there were no significant

differences in PVL neuron event frequency distributions (Fig-

ure 5A). This is consistent with earlier work showing no difference

in single-cell visual response properties between DR and NR fish

[16]. There was a slight difference in event frequency of NP neu-

rons (Figures 5B and 5C), consistent with an earlier report of

changes in NP due to dark rearing [36]. Slight differences were

observed in correlation structure between NR and DR. Pairwise

correlations were lower at short range (up to 50 mm) in the DR

case (Figure 5D). Interestingly, this is in the opposite direction

from the increase in correlation caused by enucleation.

There were, however, substantial changes in the higher-order

properties of spontaneous activity in DR versus NR fish. Func-

tional connectivity as measured by graph statistics was different

in DR compared to NR fish. Graphs for the DR fish had a lower

mean degree (Figure 5E) and lower clustering coefficients

(Figure 5F), although the network topology remained scale free

(Figure 5G). DR fish also had lower numbers of assemblies (Fig-

ure 5H), although there was no difference in the number of neu-

rons per assembly or the assembly area compared to normal fish

(Figures 5I and 5J). Similar to NR fish, assemblies were equally

likely to appear, and for only one DR fish was the distribution

of assembly frequencies significantly different from a uniform

distribution. Again the affinity between neurons and assemblies

was similar to the NR case. Thus, whereas examining only first-

order statistics of spontaneous activity suggests that dark rear-

ing has no effect, a significant impact of dark rearing is revealed

by examining pairwise correlations. Short-range correlations

decrease, neurons have fewer functional connections, these

connections are less clustered, and the number of assemblies

decreases.

Dark rearing alters the statistics of tectal spontaneous activity,

but does it also alter visually guided behavior? To test this,

we placed DR and clutch-mate NR fish individually in 35 mm

dishes with 50 Paramecia and then 2 hr later counted how

many Paramecia remained uneaten in each dish (see STAR

Methods). At 6 dpf, on the first exposure of both NR and DR

fish to food they had to hunt, NR fish (n = 12) consumed

many more Paramecia than DR fish (n = 18) (Figure 5K). Both

sets of fish were then fed once per day with rotifers and

Paramecia and assayed again at 9 dpf. Remarkably, while DR

fish (n = 16) had improved slightly, they still did not hunt as effec-

tively as NR fish (n = 14). Thus, besides altering tectal activity
ars are SEM.

n 6 and 9 dpf (4 versus 5 dpf, p = 10�3; 5 versus 6 dpf, p = 10�4; 5 versus 7 dpf,

o difference; one-way ANOVA, Bonferroni correction). Error bars are SEM.

t, indicating that assemblies gradually change their spatial properties (4 versus
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Figure 4. Enucleation Changes Spontaneous Activity Statistics

(A) Experimental procedure for 24 hr enucleations. Larvae at 23–25 hpf were anesthetized and enucleated unilaterally or bilaterally. Fish were then imaged for

spontaneous activity at 6 dpf. Denervated (Den) and intact tecta were imaged for 1 hr each (n = 10 fish). Bilaterally enucleated (BE) fish (n = 9) were compared with

normally reared (NR) fish (n = 8).

(B) Event frequency of PVL neurons in the unilateral case is lower in the Den than the intact tecta (paired t test).

(C) The number of low-activity frames (one or zero neurons active) is higher in the Den tectum.

(D) Den, intact, and BE tecta are more correlated than NR tecta (NR versus BE, p = 10�48, p = 10�40, p = 10�7, and no difference; NR versus Den, p = 10�69,

p = 10�63, p = 10�25, and p = 10�2; NR versus intact, p = 10�60, p = 10�34, p = 10�16, and p = 10�2; for 0–50, 50–100, 100–150, and 150–200 mm, respectively).

Error bars are SEM.

(E) Graph mean degree is higher in the Den, intact, and BE tecta than the NR tecta (intact versus Den, p = 10�2; intact versus NR, p = 10�17; intact versus BE, no

difference; Den versus NR, p = 10�30; Den versus BE, no difference; NR versus BE, p = 10�14; one-way ANOVA, Bonferroni correction). Error bars are SEM.

(F) The number of assemblies is lower in the Den than the intact tectum or NR tectum (p = 0.05 and p = 10�3, respectively, Wilcoxon rank-sum test). Number of

assemblies in the NR fish is not different from the BE fish.

(G) Den and intact tecta have a similar number of neurons per assembly, higher than the number of neurons per assembly in NR fish. There is no difference

between NR and BE tecta (intact versus NR, p = 10�3; Den versus NR, p = 10�5; Den versus BE, p = 10�3; Kruskal-Wallis nonparametric one-way ANOVA,

Bonferroni correction).

(H) Den assemblies cover greater area than the NR or the BE assemblies (Den versus NR, p = 10�2; Den versus BE, p = 10�3; intact versus Den, no difference;

Kruskal-Wallis nonparametric one-way ANOVA, Bonferroni correction).

(I) Spatial relation between assembly neurons and assembly center of mass suggests that NR and intact assemblies are sparser andmore compact than Den and

BE assemblies.
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Figure 5. Dark Rearing Changes Local Circuit Properties and Behavior

(A) Dark-reared (DR) and NR PVL event frequency distributions are similar (Kolmogorov-Smirnov test), suggesting no difference at the single-cell level.

(B) DR and NR NP event frequency distributions are different (p = 0.004, Kolmogorv-Smirnov test).

(C) DR NP mean event frequency is higher than NR (t test).

(D) Correlation coefficients for PVL neurons show a slightly different profile with distance (0–50 mm, p = 10�13; 50–100 mm, no difference; 100–150 mm, p = 0.01;

150–200 mm, no difference; Wilcoxon rank-sum test). Error bars are SEM.

(E) DR functional connectivity graphs have lower mean degree (t test). Error bars are SEM.

(F) DR graphs have lower cluster coefficient than NR graphs (t test). Error bars are SEM.

(G) The network topology remains a scale-free network (NR, a = 1.1; DR, a = 1).

(H) Fewer assemblies are detected in DR fish than in NR fish (t test).

(I) Assemblies detected in both conditions (NR and DR) have the same mean number of neurons per assembly.

(J) Assemblies detected in both conditions (NR and DR) cover the same area.

(K) DR fish consumed fewer Paramecia compared to NR fish of the same age (6 dpf) when both were first introduced to food. DR fish, which were subsequently

exposed to light from 6 to 9 dpf, still showed a deficit in feeding behavior compared to the NR fish of the same age (9 dpf) (Wilcoxon rank-sum test, Benjamini

Hochberg multiple comparison correction).
patterns, DR has a profound and long-lasting effect on subse-

quent hunting ability, suggesting a strong effect of visual experi-

ence on visually guided behavior.

Patterned Visual Input Is Required for Normal Tectal
Development
Is merely the presence of light input required for normal tectal

development, or is the spatial structure of the environment also

important? To test this, we reared fish on a normal light-dark cy-

cle but in a featureless visual environment (featureless rearing

[FR]), with no visual contours or edges (see STAR Methods)

and imaged at 6 dpf (n = 9 fish, mean 34 neurons/fish). Event fre-

quencies in both the PVL and NP were unchanged, as were the
number of assemblies, the number of neurons per assembly, and

the assembly area. However, FR caused an increase in correla-

tions between neurons (Figures 6A and 6B), consistent with the

changed structure of the visual environment. Mean degree and

local clustering also increased (Figures 6C and 6D), but the

network topology remained scale free (Figure 6E). Assembly fre-

quencies and affinities were similar to the NR case. We per-

formed the same prey-capture assay as for the DR fish, but we

found no difference in feeding performance with NR fish at

6 dpf (n = 14 FR fish and n = 30 NR fish). Thus, while the effect

of FR was more subtle than DR, a lack of visual contours during

development did cause measurable changes in the tectal func-

tional network.
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Figure 6. Featureless Rearing Changes Local Circuit Properties

(A) Correlation coefficients for PVL neurons are higher in FR relative to NR fish. Error bars are SEM.

(B) Cumulative distributions of correlation coefficients show a difference in correlations between NR (solid line) and FR (dashed line) fish at most distances

(0–50 mm, p = 10�38; 51–100 mm, p = 10�10; 101–150 mm, p = 0.02; 151–200 mm, no difference; Kolmogorov-Smirnov test).

(C) FR functional connectivity graphs have higher mean degree (t test). Error bars are SEM.

(D) FR graphs are more locally clustered than NR graphs (t test). Error bars are SEM.

(E) The network topology remains a scale-free network (NR, a = 1.5; FR, a = 0.8).
DISCUSSION

The development of tectal functional properties could, in princi-

ple, be driven by changes in feedforward connections from the

retina, changes in intratectal connections and/or intrinsic tectal

cell properties, or both. Axons from the retina first arrive in the

tectal NP at 2 dpf, and from 2 to 4 dpf they navigate to their topo-

graphically appropriate targets using a biased branching mech-

anism [37, 38]. Retinal axon arbors increase in total length and

number of branches from 3 to 6 dpf and then stabilize [39]; during

this period, the dendrites of tectal neurons also increase their

total arbor length [40]. This is temporally consistent with the

peak in several measures related to spontaneous activity that

we observed at 5–6 dpf. Although subsequent anatomical prun-

ing of axonal and dendritic arbors has not been observed, arbor

refinement via functional synaptic elimination could potentially

contribute to the decline we observed after 5–6 dpf.

Little is known about either the detailed structure or develop-

mental trajectory of intratectal connections in zebrafish. In

Xenopus larvae, intratectal connections play an important role

in sensory processing, which depends on an appropriate bal-

ance of excitation and inhibition [41]. Furthermore, refinement

of local tectal circuits occurs over Xenopus development, lead-

ing to functional changes [42, 43]. Recent work has found a tran-

sient increase in tectal neuron excitability at stage 47, when the

larvae are 5 days old, perhaps indicating a critical moment in

Xenopus tectal development [44]. These findings are consistent

with our own in zebrafish and argue that developmental changes
2416 Current Biology 27, 2407–2419, August 21, 2017
within the tectum, not just changes in feedforward input, are also

likely to contribute to the observed temporal changes in tectal

spontaneous activity.

The development of receptive field properties in the zebrafish

tectum [45] shows a similar trajectory to our observations of

spontaneous activity. In particular, receptive field size increases

from 4 to 6 dpf and then refines to the same size as that at 4 dpf

by 8–9 dpf, with the excitatory components of the receptive field

playing a larger role in determining this developmental profile

than the inhibitory components. During this period, GABAergic

responses most likely switch from depolarizing to hyperpolariz-

ing [45]. Overall, these authors concluded that functional pruning

of feedforward inputs is the most important factor in receptive

field refinement. Taken together, the above results from zebra-

fish and Xenopus suggest that changes in both feedforward

and intratectal connectivity contribute to the developmental tra-

jectory of spontaneous activity.

Dark rearing haspreviously been reported to have little or no ef-

fect on zebrafish tectal development [16, 21, 36, 46–49]. In

contrast, we found that dark rearing increased tectal event fre-

quency of NP cells, reduced the mean degree and cluster coeffi-

cient of the tectal functional network, reduced the number of neu-

ral assemblies present, and had a long-term impact on the ability

to hunt prey (Figure 5). Thus, despite the lack of obvious changes

in morphology or receptive fields, the absence of normal visual

input during development did have an effect on both behavior

and the higher-order statistical properties of functional networks

in the tectum. This suggests that the statistics of spontaneous



retinal activity do not entirely mimic those of the natural scenes

that zebrafish larvae normally encounter [4, 50–52].

Although at the single-cell level no differences were found be-

tween BE fish and NR fish, at the population level both bilateral

and unilateral enucleation caused substantial changes in corre-

lation structure, and pairwise correlations in both the BE tecta

and Den (unilateral case) tecta were higher than in NR tecta (Fig-

ure 4). This could be explained by analogy with data from mice,

where eye opening normally leads to ‘‘sparsification’’ of cortical

activity whereby neurons become less synchronized [53]. Such

sparsification could lead to the drop in short-range correlation

we observed after 5 dpf (Figure 1I). By contrast, in our enucleated

zebrafish, there was a lack of the input activity needed to drive

sparsification of tectal activity. Interestingly, correlation structure

in the intact tectum resembled that in BE and Den tecta more

than the NR tecta, indicating a role for interhemispheric connec-

tions in transmitting information between the hemispheres.

Remarkably, in the unilateral case, Den tecta had amuch greater

impact on the intact tecta than the other way around.

While our paper was in review, a paper was published that also

looked at the development of spontaneous activity in the zebra-

fish tectum (using GCaMP3) and the effect of binocular enucle-

ation [54]. While our findings are broadly in agreement with this

work, we alsomake several new contributions.Most importantly,

these include the graph-theoretic analysis of changes in func-

tional connectivity over development, a new graph-theoretic

approach to finding assemblies, and the demonstration that

both enucleation and more subtle manipulations of visual expe-

rience cause significant changes in both the development of

spontaneous activity and, for dark rearing, prey-capture ability.

The zebrafish tectum has conventionally been thought of as a

relatively hard-wired structure, following intrinsic rules of devel-

opment driven primarily by cues such as molecular gradients.

Here we have shown that its functional architecture does not

develop in a smooth and monotonic fashion, but rather has a

specific developmental trajectory with a peak in many measures

occurring at 5–6 dpf. Furthermore, its network organization is

dependent on the statistical structure of retinal activity and is

sensitive even to the statistical differences between natural

scenes and retinal spontaneous activity. An intriguing possibility

is that 5–6 dpf of zebrafish tectal development can be thought of

as a ‘‘critical period,’’ analogous to the well-documented critical

periods in the development of mammalian cortex [55]. An

exciting avenue for future work is to explore the effect on zebra-

fish tectal development of the kind of manipulations of both

visual input and pharmacology that have been performed during

the critical period in mammals [56]. The zebrafish’s rapid devel-

opment and relative ease of manipulation could potentially allow

more rapid exploration of disorders of the critical period than is

possible in mammalian systems, thus facilitating the develop-

ment of new treatments.
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3. Gonçalves, J.T., Anstey, J.E., Golshani, P., and Portera-Cailliau, C. (2013).

Circuit level defects in the developing neocortex of Fragile X mice. Nat.

Neurosci. 16, 903–909.

4. Berkes, P., Orbán, G., Lengyel, M., and Fiser, J. (2011). Spontaneous

cortical activity reveals hallmarks of an optimal internal model of the envi-

ronment. Science 331, 83–87.
Current Biology 27, 2407–2419, August 21, 2017 2417

http://dx.doi.org/10.1016/j.cub.2017.06.056
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref1
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref1
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref2
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref2
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref2
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref3
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref3
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref3
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref4
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref4
http://refhub.elsevier.com/S0960-9822(17)30793-5/sref4


5. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., and Arieli, A. (2003).

Spontaneously emerging cortical representations of visual attributes.

Nature 425, 954–956.

6. Miller, J.E., Ayzenshtat, I., Carrillo-Reid, L., and Yuste, R. (2014). Visual

stimuli recruit intrinsically generated cortical ensembles. Proc. Natl.

Acad. Sci. USA 111, E4053–E4061.

7. Ackman, J.B., Burbridge, T.J., and Crair, M.C. (2012). Retinal waves coor-

dinate patterned activity throughout the developing visual system. Nature

490, 219–225.

8. Shen, J., and Colonnese, M.T. (2016). Development of activity in the

mouse visual cortex. J. Neurosci. 36, 12259–12275.

9. Gahtan, E., Tanger, P., and Baier, H. (2005). Visual prey capture in larval

zebrafish is controlled by identified reticulospinal neurons downstream

of the tectum. J. Neurosci. 25, 9294–9303.

10. Zhang, R.W., Li, X.Q., Kawakami, K., and Du, J.L. (2016). Stereotyped initi-

ation of retinal waves by bipolar cells via presynaptic NMDA autorecep-

tors. Nat. Commun. 7, 12650.

11. Romano, S.A., Pietri, T., P�erez-Schuster, V., Jouary, A., Haudrechy, M.,

and Sumbre, G. (2015). Spontaneous neuronal network dynamics reveal

circuit’s functional adaptations for behavior. Neuron 85, 1070–1085.

12. Newman, M.E.J., and Reinert, G. (2016). Estimating the number of com-

munities in a network. Phys. Rev. Lett. 117, 078301.

13. von Luxburg, U. (2007). A tutorial on spectral clustering. Stat. Comput. 17,

395–416.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Geoffrey

Goodhill (g.goodhill@uq.edu.au).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish
All procedures were performed with approval from The University of Queensland Animal Ethics Committee. Nacre zebrafish (Danio

rerio) embryos expressing elavl3:H2B-GCaMP6s, of either sex, were collected and raised according to established procedures [58]

and kept under a 14/10 hr on/off light cycle except where otherwise indicated. Larvae were fed live rotifers (Brachionus plicatilis) from

5 dpf unless otherwise indicated.

METHOD DETAILS

Dark rearing (DR)
Larvae were placed, at 5–8 hpf, into 35 mm petri dishes with E3 medium [58] (in mM): 5 NaCl, 0.17 KCl, 0.33 CaCl2, 0.33 MgCl2
(pH 7.2), in a dark box, in a dark incubator at 28.5 degrees, in a dark room until 6 dpf. They were then embedded in 2% low melting

point agarose (Lonza) in a 35 mm petri dish, and overlaid with E3 medium prior to 2-photon imaging.

Enucleations at 24 hpf
Larvae at 23–25 hpf were anesthetized with 0.2mM tricaine in E3 and embedded in 2% lowmelting point agarose. A sharpened tung-

sten needle was used to remove one eye or both eyes. The larvaewere allowed to recover for 1 hr and then removed from the agarose

and reared normally on a 14/10 hr light cycle.

Featureless-rearing (FR)
Each larva was placed, at 5–24 hpf, alone into 4 cm diameter hollow light bulbs, with all labels and interior filament removed. The bulb

exteriors were painted white, filled with E3 and plugged with white cotton wool. The larvae were raised until 6 dpf in 28.5 degrees and

14/10 hr light cycle.

Feeding assay
Individual fish from the two groups (DR or FR) and their respective siblings (NR) were placed (singly) into 35 mm diameter petri dishes

containing E3 with 50 Paramecia (Paramecium caudatum) and left for 2 hr. The fish were then removed and pooled back into their

respective group. The Paramecia remaining in each dish were counted. The identity of a fish as either DR, FR or NR was blinded

to the person counting.

2-photon calcium imaging
Zebrafish larvae were embedded in 2% low-melting point agarose in E3 embryo medium in 35 mm diameter plastic petri dishes and

the agarose was overlaid with E3. Calcium imaging was performed on two independent imaging systems at a depth of 60 mm from the

dorsal surface of the tectal midline. For normal and dark-reared fish (Figures 1, 2, 3, and 5), time-lapse 2-photon images were ac-

quired using a Zeiss LSM 710 upright system with a Chameleon multiphoton imaging laser (Coherent) at an excitation wavelength
e1 Current Biology 27, 2407–2419.e1–e4, August 21, 2017
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of 940 nm. The emitted light was bandpass filtered (500–550 nm) and detected with a nondescanned detector and a 40X/1.0 water-

dipping objective (Zeiss). Time-lapse images (400 3 300 pixels) were obtained at 2.2 Hz for 60 min. For enucleated, featureless-

reared, and a group of control normal-reared 6 dpf fish (Figures 4 and 6) images were acquired on a separate Zeiss LSM 710 inverted

2-photon microscope. A custom-made inverter tube composed of a pair of beam-steering mirrors and two identical 60 mm focal

length lenses arranged in a 4f configuration was used to allow imaging with a 40X/1.0 NAwater-dipping objective (Zeiss) in an upright

configuration. Samples were excited via a Spectra-Physics Mai TaiDeepSee Ti:Sapphire laser (Spectra-Physics) at an excitation

wavelength of 940 nm. Laser power at the sample plane was matched between systems (9–12 mW) by measuring the average laser

power at 940 nm using a compact power meter (PM100A, Thorlabs). The emitted light was bandpass filtered (500–550 nm) and de-

tected with a nondescanned detector. Time-lapse images (400 3 300 pixels) were obtained at 2.2 Hz for 60 min. Comparisons be-

tween fish presented in the text are always between fish imaged on the same microscope.

Image registration
Recordings which showed a drift in the z-plane were discarded. All fluorescence data stacks were corrected for x-y drifts using

custom MATLAB software. A 1 hr movie was divided into 6 movies of 10 min each for image processing and then rejoined back

for analysis. Frames of a 10 min movie were first aligned with a reference frame within the movie using custom MATLAB software

based on MATLAB’s rigid image registration algorithm. To align stacks between 10 min movies, reference frames were aligned

with the first movie’s reference frame.

Cell detection and calcium signals
Custom MATLAB software was used to automatically detect the region-of-interest (ROI) of each active cell, i.e., the group of pixels

defining each cell. The software searched for active pixels, i.e., pixels that showed changes in brightness across frames, resulting in

an activity heatmap of all the active regions across frames [59]. The activity map was then segmented into regions using a watershed

algorithm, with a similar threshold applied to all movies. Within each segmented region, we computed correlation coefficients of all

pixels in the region with the mean of the most active pixel and its eight neighboring pixels. Correlation coefficients showed a bimodal

distribution; one peak of highly correlated pixels representing pixels of the cell within the region, and a second peak of relatively low

correlation coefficients representing nearby pixels within the region which were not part of the cell. Using a Gaussian mixture model,

we found the threshold correlation which differentiated between pixels likely to form the active cell and neighboring pixels that were

not part of the cell. We also required that each detected active area covered at least 26 pixels (5.5 mm2). The software allowed visual

inspection and modification of the parameter values where needed. All pixels assigned to a given cell were averaged to give a raw

fluorescence trace over time. Raw calcium signals for each cell, FðtÞ, were then converted to represent changes from baseline level,

DF=FðtÞ defined as ðFðtÞ � F0ðtÞÞ=F0ðtÞ. The time varying baseline fluorescence, F0ðtÞ, for each cell was a smoothed curve fitted to the

lower 20% of the points. F0ðtÞ was the minimum of the smoothed fluorescence trace in a 3 s window centered at t.

Calcium events
We defined an event as a major deflection in fluorescence levels from baseline, indicating an increase in firing rate of a neuron. For

each neuron, each time bin in which its amplitude was two standard deviations above the mean was marked with a 1. This provided

us with a binary activity matrix where each row represents a neuron and each column represents a time bin. This matrix was used for

subsequent calculations.

To quantify event frequency all local maximawhichwere both above two standard deviations above the neuron’smean and at least

0.5 DF/F(t) different in amplitude from the immediately neighboring maxima were selected.

Determination of a statistically significant level of co-activity
To establish a threshold for the significance for the number of co-active neurons, the binary activity matrix was randomly shuffled 500

times within neurons, keeping the number of events per cell identical, but changing their timing. The threshold corresponding to a

significance level of p < 0.05 was estimated as the number of activated neurons in a single frame that exceeded 5% of these surro-

gate datasets.When determining significant frames for further assembly detection we considered coactivity levels in the PVL neurons

only.

Significance of pairwise correlation coefficients
We computed the pairwise correlation coefficient r between all pairs of neurons, to give a distribution PðrÞ. To assess statistical sig-

nificance we temporally displaced each neuron’s calcium trace randomly with respect to the other traces using a SHIFT algorithm as

described previously [60], disrupting the temporal relationship between neurons while preserving the temporal structure within each

neuron (such as event frequency, event decay time and noise level). We then calculated the correlation coefficient between all pairs of

shifted traces to obtain a null distribution. Pairs of neurons with a correlation coefficient greater than the 95th percentile of correlation

coefficients in the null distribution were deemed statistically significant (p < 0.05).

Estimating the number of communities in the graph
To estimate the number of communities present in a given graph we applied a recently introduced approach which is based on sta-

tistical inference methods [12]. This approach aims to fit a generative model of a graph, which is capable of exhibiting community
Current Biology 27, 2407–2419.e1–e4, August 21, 2017 e2



structure, to an observed graph, in order to infer information about the community structure from the parameters of the fitted model.

As a generative model we used the degree-corrected stochastic block model [12, 26]. In this model, given a number of nodes and a

number of communities k, every node is independently assigned to one of k communities. Edges are then drawn independently

depending on degree as well as the corresponding community of the nodes. Provided that edges between nodes of the same com-

munity are drawn with a higher probability than edges between different communities the resulting graph will exhibit community

structure. Unlike the classical stochastic block model [61], which fails to adequately capture variable degree distribution, the de-

gree-corrected stochastic block model is able to fit any graph [26]. Within this model it is possible to derive an explicit expression

for the probability of having k communities and a community assignment g given the actual observed graph G, Pr½k; gjG�. Using nu-

merical integration the probability of having k communities given the actual observed graphG, Pr½kjG� can be obtained as an approx-

imation Pr½k; gjG�zð1=NÞPN
n= 1dk;kðnÞ by sampling a sequence of points fðkðnÞ;gðnÞÞg1%n%N from the joint distribution using a Markov

Chain Monte Carlo procedure. This provides an estimate for the number of communities in the observed graph in terms of a prob-

ability distribution. From this distribution we inferred the most likely number of communities present in the graph. We implemented

the sampling algorithm in MATLAB based on the original implementation obtained from http://www.umich.edu/�mejn/communities/

communities.zip.

Community structure assignment
Given the number of communities determined above, for the actual clustering we used spectral clustering methods. These approx-

imately solve particular graph cutting objectives efficiently by looking at spectral properties of different graph Laplacians [13]. We

clustered the graphs according to the Ncut objective, which aims to find clusters such that the number of edges between clusters

is minimized, while the number of edges within each cluster is maximized [27].

Assembly detection
Given the set of frameswith significant PVL neuronal activity patterns in the form of binary vectors, fxg, we constructed a graph taking

these frames as the underlying set of nodes. Edges between the nodes were drawn depending on the similarity of the corresponding

activity patterns according to the cosine distance, dcosine : ðx; x0Þ11� hx; x0i=ðkx k kx0 k Þ (Figure 4B). More precisely, we constructed

this graph as an unweighted k-nearest-neighbor graph with k chosen to be equal to lnjfxg j [13], increasing k if the network turned out

to be disconnected. In such a graph, community structure corresponds to similar patterns of neuronal activity, and therefore also to

the neuronal assemblies of co-active neurons. We then took the corresponding frames of similar activity patterns and averaged them

so that we obtained a set of initial core assembly activity patterns f~ag, discarding neuronswith less than 20%affinity to the assembly.

We used these preliminary core assembly activity patterns in order to refine the clustering of the whole set of frames, motivated by

preliminary results using surrogate data. First we disregarded any core assembly activity pattern which corresponded to and orig-

inated from a particularly small group of frames. In particular, given the size of all the groups we set the threshold to 1.5 standard

deviations below the mean, provided that the size of the group already exceeded 4 frames. We then combined groups whose

corresponding core assembly activity patterns were similar, in the sense that minððh~a0; ~ai=k~a k 2Þ; ðh~a; ~a0i=k~a0 k 2ÞÞ > 2=3 for ~a and

~a0 two distinct core assembly activity patterns in their binary form. This similarity condition ensured that the overlap of the two activity

patterns relative to their absolute level of activity was comparable. We did this recursively, and from these rearranged groups defined

a new set of core assembly activity patterns. These were then used to re-assign all the activity patterns under consideration into a

new set of groups. For an activity pattern x to be assigned to a group defined by a core assembly activity pattern ~awe required them

to be similar enough to one another in the sense that the conditions ðh~a; xi=kx k 2Þ > 1=2 and ðkx k 2=k~a k 2Þ > 1=2 were satisfied. This

ensured that the overlap of the activity pattern with the core assembly activity pattern relative to its absolute activity level, as well as

the activity pattern’s absolute activity level relative to the core assembly activity pattern’s absolute activity level, exceeded 0.5. If

these conditions were satisfied we assigned the activity pattern to the core assembly activity pattern’s group which was closest

in the cosine distance, and otherwise rejected it. We thus obtained groups of highly similar activity patterns. Averaging the activity

patterns for every group, and imposing a threshold of 20% affinity on the resulting pattern, we obtained a final set of core assembly

activity patterns fag, and the assemblies as the neurons whose affinity exceeded the threshold in the corresponding pattern. As

before, we neglected groups smaller than 1.5 standard deviations below the mean size of groups provided that the size already ex-

ceeded 4 frames.

Evaluating the performance of assembly detection
In order to evaluate the performance of our proposed algorithm for detection of assemblies and to test it against an established

method based on an independent-component-analysis approach [29], we generated 1567 surrogate datasets based on 394 different

predefined assembly configurations at 4 different levels of assembly occurrence frequency.

Each dataset consisted of 5 assemblies generated on a 12 3 12 grid of neurons. Each assembly center was chosen randomly in

this grid. 48 random samples were then drawn from a Gaussian function with that center, and all grid positions within which at least

one sample fell were deemed to represent active neurons. Given two assemblies a and a0, in the sense of index sets of the corre-

sponding patterns, generated in this way, the pairwise overlap wasmeasured as ða; a0Þ1ðjaXa0 j =minðja j ; ja0 j ÞÞ. Themean pairwise

overlap for each dataset of 5 assemblies was defined as the average of all pairwise overlaps between assemblies. From a large num-

ber of such datasets, we sampled a subset such that the mean pairwise overlap of the corresponding assembly configurations was

approximately uniformly distributed in the range from 0.0 to roughly 0.6.
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Surrogate calcium activity movies for each dataset of duration 1 hr were then created as follows. Neurons were modeled as Pois-

son processes [28], each with a different baseline firing rate drawn from a discrete uniform distribution R � U½1;6�Hz. Assembly acti-

vation was modeled as a synchronous increase in the firing rate of assembly neurons [28]. For each assembly, a proportion q of time

bins (q = 0.125%, 0.2%, 0.375%, 0.5%) was selected to be assembly activation bins, in which assembly neurons elevated their firing

rate from their baseline by a gain factor of 6. To maintain the same firing rate across all neurons, each non-assembly neuron also

elevated its firing rate by the same gain factor in the same proportion of bins (q) which were selected randomly for each neuron. After

producing Poisson spiking from this population rate matrix, the activity for each cell was convolved with a calcium kernel with a 2 s

half decay time [62] to generate surrogate calcium signals. These were then processed in the same way as experimental calcium

signals for input to the assembly detection algorithm. To measure the performance of detection of surrogate assemblies we used

a Best Match score, defined as 1� 1=ðjA j + jA0 j ÞðPa˛A min
a0˛A0

dða; a0Þ+P
a0˛A0 min

a˛A
dða0; aÞÞ with d : ða; a0Þ11� ðjaXa0 j =jaWa0 j Þ

for two assembly configurations A and A0. This is a specific application of a general method for determining the degree of similarity

of two different clusterings of the same data [63]. If the originalA and reconstructedA0 sets of assemblies exactly coincide their Best

Match score is 1, and if there is no overlap their score is 0.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical correction for multiple comparisons
To correct for multiple comparisons we used Bonferroni or Benjamini Hochberg correction. p values quoted in the text are already

adjusted, where appropriate, according to these corrections.

DATA AND SOFTWARE AVAILABILITY

Software
Data analysis was coded in MATLAB. The codes will be made available upon request.
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Figure S1: Neuropil (NP) neurons segregate in two populations, both spatially and functionally.

Related to Figure 1. (A) An imaged tectum with an ellipse fitted to the NP area (dashed red line).

The antero-posterior (AP, yellow) and latero-medial (LM, red) axes are represented by the two axes

of the ellipse. (B) Position of neurons on the LM axis plotted against their event frequency, pooled

over fish for each age, shows a significant correlation at 5-8 dpf. (C) Histogram of event frequency

of NP neurons (blue) was fitted by a mixture of three Gaussians (red), as determined by the Akaike

information criterion (AIC)(inset). This criterion provides a statistically principled way of trading off

model complexity against data fit. (D) NP neurons from all ages shown on a common NP ellipse.

Color codes each neuron’s event frequency (events/min). (E) Position of all NP neurons on the AP

axis plotted against their event frequency shows no significant relationship. (F) Equivalent graph for

the LM axis (pooled over all ages) shows a significant correlation. (G) After correction for multiple

comparisons there were no significant changes in the frequency of superficial and deep NP neurons

over development (one way ANOVA, Bonferroni correction).
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Figure S2: Assembly detection based on graph-theoretic techniques outperforms a commonly

used method. Related to Figure 3. A: Performance of the graph-theoretic approach in Best Match

score (see STAR Methods) as a function of the mean pairwise overlap between the underlying em-

bedded assemblies for different values of assembly frequency (color coded). Also shown is chance

performance (gray). Performance is better than chance and robust over the range of overlap levels. B:

Same as A for the ICA approach. Performance is better than chance and high for low levels of overlap,

however performance decreases as overlap increases. C: Difference in performance between the two

techniques shows that the graph-theoretic technique outperforms the ICA technique as the overlap

between the underlying assemblies increases.
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